Impulsive periodic boundary value problems of first-order differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impulsive Boundary-value Problems for First-order Integro-differential Equations

This article concerns boundary-value problems of first-order nonlinear impulsive integro-differential equations: y′(t) + a(t)y(t) = f(t, y(t), (Ty)(t), (Sy)(t)), t ∈ J0, ∆y(tk) = Ik(y(tk)), k = 1, 2, . . . , p,

متن کامل

Boundary Value Problems for First Order Impulsive Difference Equations ∗

In this paper, first order impulsive difference equations with linear boundary conditions are discussed. By using a new comparison theorem and the method of upper and lower solutions coupled with the monotone iterative technique, criteria on the existence of minimal and maximal solutions are obtained. AMS subject classification: 34D20, 34A37.

متن کامل

On Periodic Boundary Value Problems of First-order Perturbed Impulsive Differential Inclusions

In this paper we present an existence result for a first order impulsive differential inclusion with periodic boundary conditions and impulses at the fixed times under the convex condition of multi-functions.

متن کامل

On Periodic Boundary Value Problems of First Order Discontinuous Impulsive Differential Inclusions

In this paper we prove existence results for extremal solutions of the first order discontinuous impulsive differential inclusions with periodic boundary conditions and impulses at the fixed times under certain monotonicity conditions of the multi-valued functions.

متن کامل

Anti-periodic Boundary Value Problems for Nonlinear Higher Order Impulsive Differential Equations

This paper is concerned with the anti-periodic boundary value problems for nonlinear higher order impulsive differential equations   x(t)=f(t, x(t), x′(t), · · · , x(n−1)(t)), t ∈ [0, T ], t = tk, k = 1, · · · , p, ∆x(tk)= Ii,k(x(tk), x′(tk), · · · , x(n−1)(tk)), k = 1, · · · , p, i = 0, · · · , n− 1, x(i)(0)=−x(i)(T ), i = 0, · · · , n− 1. We obtain sufficient conditions for the existence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2007

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.04.005